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Workshop Aims

• Review the implications of missing data

− including wider problems of selection bias

− and measurement error

• Introduce methods to adjust for missing data

− probability weights

− imputation
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Workshop Aims: Recap

• Assumptions in the linear regression model (Y = α+βkXk + e):

− normality: residuals are normally distributed

− homoskedasticity: the variance of the residuals is constant

− independence: residuals are independent of each other

− no multicollinearity

− perfectly measured variables

− no missing data (other than missing at random)

− no unobserved confounders: we control for all common causes of
X1 and Y

− no reverse causality: Y does not cause X1

− linearity: the effect of X1 on Y is the same across the range of
X1
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Selection Bias

• Non-probability sampling methods

− not every subject in the population has an equal chance of being
captured in the sample

− tend to produce biased samples

− i.e. systematically different from the population

• Probability sampling methods

− everyone has an equal chance, in principle

− Question: could probability samples ever be biased?

− coverage error

− non-response
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Non-response

• One form of missing data, not the only one

• The most common form of missing data in survey research

• Can take two main forms

− unit non-response (an entire case is missing)

− item non-response (information for a given variable is missing)

• Missing data mechanisms can be classified in three groups

− missing completely at random (MCAR) - not data dependent

− missing at random (MAR) - dependent on seen data

− missing not at random (MNAR) - dependent on unseen data

• Different implications depending on the ignorability of the
missing data mechanism
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Unit and Item Non-Response

• Question: can you identify which cases are affected by
unit-missingness and which by item-missingness?
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Missing Data Mechanisms

• Missing completely at random

− the missing data mechanism is not related to any of our
explanatory variables

− e.g. some of the data was lost by accident

− implications: loss of statistical power because of using a smaller
sample

• Missing data at random

− related to one or more of our explanatory variables

− e.g. male judges might forget to submit their survey forms more
commonly than female judges

− if left unadjusted will bias our estimates, if adjusted becomes
‘ignorable’

• Missing data not at random

− systematically related to unobserved data

− e.g. harsher judges might try to avoid submitting their forms

− cannot be adjusted easily, will bias our estimates
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Probability Weights

• Using weights we can reflect the over/under-representation of
certain cases in our sample and obtain a more representative
sample

• One method to create weights is post-stratification

− if we know the distribution for one or a set of variables in both
the target population and our sample

− we can calculate weights as a ratio of ratios

− poststratification weights can range from 0 to ∞, although in
practice we often cap them from 0.3 to 3

− a weight of 1 means that the influence of that case in our
analyses remains unchanged

− a weight of 2 means that the case counts as two normal cases (its
influence is doubled)

− a weight of 0.5 means that the case influence is halved
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Limitations of Weights

• They are not statistically efficient (increase standard errors)

− cases with W < 1 are not contributing that much

− those with W > 1 are contributing more than the typical case
without increasing the heterogeneity of the sample

− trade-off between accuracy (validity) and precision (reliability)

• Can adjust for multiple variables

− by combining their categories

e.g. male-white, male-nonwhite, female-white, female-nonwhite

− however, soon we run out of cases within specific categories

• Not so flexible to deal with item non-response

− imputation methods are normally used instead
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Making the most of the Data

• Cases affected by unit-missing are dropped (case 4)

• But also we have to drop cases affected by item-missingness (cases 1

and 5) if we are using those variables, listwise deletion

• Using imputation methods we will be able to use cases affected by

item non-response
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Single Imputation
• The simplest methods are based on ‘single imputation’

− aim to replace each missing data point with a plausible value

• Mean imputation

− each missing case replaced by the mean of the observed cases in
the same item/variable

− allows us to make use of all cases

− artificially reduces the standard deviation of the variable
imputed and the standard errors of any model where it is used

• Hot-deck imputation & regression imputation

− each missing case replaced with a value from a similar
observation in the dataset

− uses other variables and cases for which there is complete
information to make predictions about the missing values

− hot-deck imputation if the prediction is made using matching,
regression imputation if using regression

− allows using all cases and the effect on the standard deviation
will be milder

− standard errors still biased from taking the imputed values as
data points rather than as estimates for which we are uncertain
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Multiple Imputation

• Multiple imputation

− each missing value is replaced with multiple plausible values to
generate multiple complete data sets

− imputations can be done using regression imputation, hot-deck
imputation or similar

− the analysis is conducted in each of those datasets, results from
each analysis are saved and pooled into an average of estimates

− having multiple values eliminates the problem of treating
imputed cases as real data, i.e. accounts for the uncertainty of
the imputation process

− generally 3 to 5 imputations are sufficient

− downside, it is computationally intensive



Workshop Aims

Selection Bias

Missing Data

Probability
Weights

Imputation

Measurement
Error

Recap

13-17

Multiple Imputation
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Measurement Error

• An even more common problem than missing data but hardly
ever acknowledged

• Occurs when the true values of a variable cannot be obtained

−

observed︷︸︸︷
X∗ =

true value︷︸︸︷
X +

noise︷︸︸︷
ϵ

− can take the form of systematic errors E(ϵ) ̸= 0

− and random errors E(ϵ) = 0

• Ubiquitous in all types of quantitative research but specially
prevalent in the Social Sciences

− survey data affected by memory failures, social desirability (e.g.
underreported unemployment, see Pina-Sánchez et al. 2014), etc.

− poor operationalisation of concepts (e.g. using earnings to
measure poverty; political decentralisation as spending capacity
by regional and local governments, see Pina-Sánchez 2014)

− measures being played (e.g. arrest goals can inflate crime counts
in police data, student satisfaction will increase if I bring
chocolates before the module evaluation)

− inconsistent raters (e.g. ‘blackness’ is defined differently by
different people, see King & Johnson 2016)

https://recyt.fecyt.es/index.php/recp/article/view/37611/21129
https://ojs.ub.uni-konstanz.de/srm/article/view/5144
https://www.journals.uchicago.edu/doi/full/10.1086/686941
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Implications of Measurement Error

• Measurement error adjustments are tricky

− either require a ‘gold standard’ (a subset of our sample for which
X is observed)

− or to rely on additional assumptions

• But often we can still anticipate its potential effects

− If E(ϵ) ̸= 0 we should expect bias in the direction of the
measurement error

e.g. crack down policies on knife crime should be considered
when assessing trends in knife crime using police data

− if the measurement error is random and affecting the outcome
variable, E(Y ∗) = Y , only measures of uncertainty will be
affected, Y ∗ = β0 + β1X + e+ ϵ

− however, even random error in an explanatory variable, will bias
(attenuate) regression coefficients

the slope in simple linear regression, β̂1 =
Cov(Y,X)

V ar(X)

if X is affected by random error, β̂∗
1 =

Cov(Y,X)

V ar(X) + V ar(ϵ)
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Effect of Random Measurement Error
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Recap

• We have identified common consequences of missing data and
measurement error

− if the missing data is ignorable we should only expect a loss of
statistical power

− if the missing data is not ignorable we should expect bias

− for measurement error even random error will bias our estimates
(attenuate the slope)

• We have learnt some common methods to adjust these problems

− probability weights, help to improve overall representativity, easy
to calculate and apply

− imputation, allow us to use cases affected by item-misingness

• Recommended readings:

− on probability weights Yansaneh (2003) ‘Construction and Use of

Sample Weights’

− on multiple imputation
Van Buuren & Groothuis-Oudshoorn (2013) ‘mice: Multivariate

Imputation by Chained Equations in R’

https://unstats.un.org/unsd/demographic/meetings/egm/Sampling_1203/docs/no_5.pdf
https://www.jstatsoft.org/article/view/v045i03
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