

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

Quantitative Social Research II Workshop 7: Data Quality

Jose Pina-Sánchez

Workshop Aims

Workshop Aims

- Selection Bias
- Missing Data
- Probability Weights
- Imputation
- Measurement Error
- Recap

- Review the implications of missing data
 - including wider problems of selection bias
 - and measurement error
- Introduce methods to adjust for missing data
 - probability weights
 - imputation

Workshop Aims: Recap

Workshop Aims

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

• Assumptions in the linear regression model $(Y = \alpha + \beta_k X_k + e)$:

- normality: residuals are normally distributed
- homoskedasticity: the variance of the residuals is constant
- independence: residuals are independent of each other
- no multicollinearity
- perfectly measured variables
- no missing data (other than missing at random)
- $-\,$ no unobserved confounders: we control for all common causes of X_1 and Y
- no reverse causality: Y does not cause X_1
- $-\,$ linearity: the effect of X_1 on Y is the same across the range of X_1

Workshop Aims

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

• Non-probability sampling methods

 not every subject in the population has an equal chance of being captured in the sample

Selection Bias

- tend to produce biased samples
- i.e. systematically different from the population

Workshop Aims

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

• Non-probability sampling methods

 $-\,$ not every subject in the population has an equal chance of being captured in the sample

Selection Bias

- tend to produce biased samples
- i.e. systematically different from the population
- Probability sampling methods
 - everyone has an equal chance, in principle
 - <u>Question</u>: could probability samples ever be biased?

Workshop Aims

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

• Non-probability sampling methods

 $-\,$ not every subject in the population has an equal chance of being captured in the sample

Selection Bias

- tend to produce biased samples
- i.e. systematically different from the population
- Probability sampling methods
 - everyone has an equal chance, in principle
 - <u>Question</u>: could probability samples ever be biased?
 - coverage error
 - non-response

Workshop Aims

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

- One form of missing data, not the only one
- The most common form of missing data in survey research
- Can take two main forms
 - unit non-response (an entire case is missing)
 - item non-response (information for a given variable is missing)

Non-response

Workshop Aims

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

- One form of missing data, not the only one
- The most common form of missing data in survey research
- Can take two main forms
 - unit non-response (an entire case is missing)
 - item non-response (information for a given variable is missing)

Non-response

- Missing data mechanisms can be classified in three groups
 - missing completely at random (MCAR) not data dependent
 - missing at random (MAR) dependent on seen data
 - missing not at random (MNAR) dependent on unseen data
- Different implications depending on the <u>ignorability</u> of the missing data mechanism

Workshop Aims

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

• <u>Question</u>: can you identify which cases are affected by unit-missingness and which by item-missingness?

ID 💌	Offence type 💌	Seriousness 🔻	Prev. convictions	Sentence length 💌
1	ABH		7	18
2	ABH	3	1	5
3	Affray	2	9	12
4				
5	Affray		15	6
6	GBH	1	0	24

Unit and Item Non-Response

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

• Missing completely at random

- the missing data mechanism is not related to any of our explanatory variables
- e.g. some of the data was lost by accident
- implications: loss of statistical power because of using a smaller sample

Missing Data Mechanisms

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

• Missing completely at random

- the missing data mechanism is not related to any of our explanatory variables
- e.g. some of the data was lost by accident
- $-\,$ implications: loss of statistical power because of using a smaller sample

Missing Data Mechanisms

- Missing data at random
 - related to one or more of our explanatory variables
 - e.g. male judges might forget to submit their survey forms more commonly than female judges
 - if left unadjusted will bias our estimates, if adjusted becomes 'ignorable'

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

• Missing completely at random

- $-\,$ the missing data mechanism is not related to any of our explanatory variables
- e.g. some of the data was lost by accident
- implications: loss of statistical power because of using a smaller sample

Missing Data Mechanisms

- Missing data at random
 - related to one or more of our explanatory variables
 - e.g. male judges might forget to submit their survey forms more commonly than female judges
 - if left unadjusted will bias our estimates, if adjusted becomes 'ignorable'
- Missing data not at random
 - systematically related to unobserved data
 - e.g. harsher judges might try to avoid submitting their forms
 - cannot be adjusted easily, will bias our estimates

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

• Using *weights* we can reflect the over/under-representation of certain cases in our sample and obtain a more representative sample

Probability Weights

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

- Using *weights* we can reflect the over/under-representation of certain cases in our sample and obtain a more representative sample
- One method to create weights is post-stratification
 - $-\,$ if we know the distribution for one or a set of variables in both the target population and our sample

Probability Weights

we can calculate weights as a ratio of ratios

Gender			Population/ Sample	Weight
Female	.5	.6	.5 /.6	.8333
Male	.5	.4	.5 /.4	1.25
Total	1	1		

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

• Using *weights* we can reflect the over/under-representation of certain cases in our sample and obtain a more representative sample

Probability Weights

- One method to create weights is post-stratification
 - $-\,$ if we know the distribution for one or a set of variables in both the target population and our sample

we can calculate weights as a ratio of ratios

Gender			Population/ Sample	Weight
Female	.5	.6	.5 /.6	.8333
Male	.5	.4	.5 /.4	1.25
Total	1	1		

- poststratification weights can range from 0 to $\infty,$ although in practice we often cap them from 0.3 to 3
- $-\,$ a weight of 1 means that the influence of that case in our analyses remains unchanged
- a weight of 2 means that the case counts as two normal cases (its influence is doubled)
- $-\,$ a weight of 0.5 means that the case influence is halved

- Workshop Aims
- Selection Bias
- Missing Data

Probability Weights

- Imputation
- Measurement Error
- Recap

- They are not statistically efficient (increase standard errors)
 - $-\,$ cases with W<1 are not contributing that much
 - $-\,$ those with W>1 are contributing more than the typical case without increasing the heterogeneity of the sample

Limitations of Weights

- trade-off between accuracy (validity) and precision (reliability)
- Can adjust for multiple variables
 - by combining their categories
 - ${\it e.g.}\ {\it male-white},\ {\it male-nonwhite},\ {\it female-white},\ {\it female-nonwhite}$
 - $-\,$ however, soon we run out of cases within specific categories
- Not so flexible to deal with item non-response
 - imputation methods are normally used instead

Workshop Aims Selection Bias Missing Data

Making the most of the Data

ID 💌	Offence type 💌	Seriousness 💌	Prev. convictions	Sentence length 💌
1	ABH		7	18
2	ABH	3	1	5
3	Affray	2	9	12
4				
5	Affray		15	6
6	GBH	1	0	24

Probability Weights

Measurement Error

Recap

• Cases affected by unit-missing are dropped (case 4)

Making the most of the Data

ID 💌	Offence type 💌	Seriousness 💌	Prev. convictions	Sentence length 💌
1	ABH		7	18
2	ABH	3	1	5
3	Affray	2	9	12
4				
5	Affray		15	6
6	GBH	1	0	24

- Cases affected by unit-missing are dropped (case 4)
- But also we have to drop cases affected by item-missingness (cases 1 and 5) if we are using those variables, *listwise deletion*

ID 💌	Offence type 💌	Seriousness 💌	Prev. convictions	Sentence length 💌
2	ABH	3	1	5
3	Affray	2	9	12
6	GBH	1	0	24

Workshop Aims

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Workshop Aims Selection Bias Missing Data Probability Weights

Making the most of the Data

ID 💌	Offence type 💌	Seriousness 💌	Prev. convictions	Sentence length 💌
1	ABH		7	18
2	ABH	3	1	5
3	Affray	2	9	12
4				
5	Affray		15	6
6	GBH	1	0	24

- Cases affected by unit-missing are dropped (case 4)
- But also we have to drop cases affected by item-missingness (cases 1 and 5) if we are using those variables, *listwise deletion*

ID 💌	Offence type 💌	Seriousness 💌	Prev. convictions	Sentence length 💌
2	ABH	3	1	5
3	Affray	2	9	12
6	GBH	1	0	24

• Using imputation methods we will be able to use cases affected by item non-response

ID 🔻	Offence type 💌	Seriousness 💌	Prev. convictions	Sentence length 💌
1	ABH	2	7	18
2	ABH	3	1	5
3	Affray	2	9	12
5	Affray	1	15	6
6	GBH	1	0	24

Imputation Measureme: Error

Workshop Aims

Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

- The simplest methods are based on 'single imputation'
 - $\,-\,$ aim to replace each missing data point with a plausible value

Single Imputation

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights
- Imputation
- Measurement Error
- Recap

- The simplest methods are based on 'single imputation'
 - aim to replace each missing data point with a plausible value

Single Imputation

- Mean imputation
 - $-\,$ each missing case replaced by the mean of the observed cases in the same item/variable
 - allows us to make use of all cases
 - artificially reduces the standard deviation of the variable imputed and the standard errors of any model where it is used

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights
- Imputation
- Measurement Error
- Recap

- The simplest methods are based on 'single imputation'
 - aim to replace each missing data point with a plausible value

Single Imputation

- Mean imputation
 - $-\,$ each missing case replaced by the mean of the observed cases in the same item/variable
 - allows us to make use of all cases
 - artificially reduces the standard deviation of the variable imputed and the standard errors of any model where it is used
- Hot-deck imputation & regression imputation
 - each missing case replaced with a value from a similar observation in the dataset
 - uses other variables and cases for which there is complete information to make predictions about the missing values
 - hot-deck imputation if the prediction is made using matching, regression imputation if using regression
 - allows using all cases and the effect on the standard deviation will be milder
 - $-\,$ standard errors still biased from taking the imputed values as data points rather than as estimates for which we are uncertain

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights

Imputation

- Measurement Error
- Recap

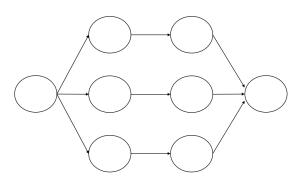
Multiple Imputation

• Multiple imputation

- each missing value is replaced with multiple plausible values to generate multiple complete data sets
- imputations can be done using regression imputation, hot-deck imputation or similar
- the analysis is conducted in each of those datasets, results from each analysis are saved and pooled into an average of estimates
- having multiple values eliminates the problem of treating imputed cases as real data, i.e. accounts for the uncertainty of the imputation process
- generally 3 to 5 imputations are sufficient
- downside, it is computationally intensive

Multiple Imputation

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights
- Imputation
- Measurement Error
- Recap



Incomplete	Imputed	Analysis	Pooled
data	data	results	results

Workshop Aims

Selection Bias

Missing Data

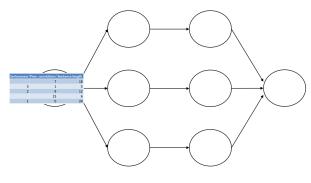
Probability Weights

Imputation

Measurement Error

Recap

Multiple Imputation



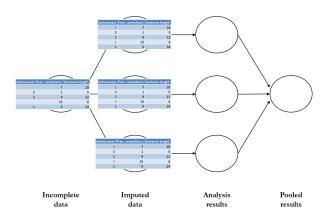
Incomplete Imputed Analysis Pooled data data results results

Multiple Imputation

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights

Imputation

- Measurement Error
- Recap

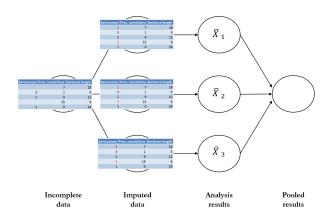


Multiple Imputation

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights

Imputation

- Measurement Error
- Recap

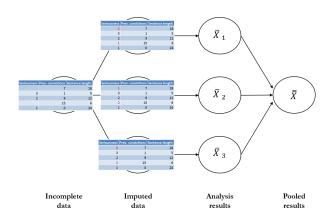


Multiple Imputation

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights

Imputation

- Measurement Error
- Recap



- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights
- Imputation
- Measurement Error
- Recap

• An even more common problem than missing data but hardly ever acknowledged

Measurement Error

- Occurs when the *true values* of a variable cannot be obtained $-\overbrace{X^*}^{observed} = \overbrace{X}^{true \ value} + \overbrace{\epsilon}^{noise}$
 - can take the form of systematic errors $E(\epsilon) \neq 0$
 - and random errors $E(\epsilon) = 0$

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights
- Imputation
- Measurement Error
- Recap

• An even more common problem than missing data but hardly ever acknowledged

Measurement Error

- Occurs when the *true values* of a variable cannot be obtained $-\overbrace{X^*}^{observed} = \overbrace{X}^{true \ value} + \overbrace{\epsilon}^{noise}$
 - can take the form of systematic errors $E(\epsilon) \neq 0$
 - and random errors $E(\epsilon) = 0$
- Ubiquitous in all types of quantitative research but specially prevalent in the Social Sciences
 - survey data affected by memory failures, social desirability (e.g. underreported unemployment, see <u>Pina-Sánchez et al. 2014</u>), etc.
 - poor operationalisation of concepts (e.g. using earnings to measure poverty; political decentralisation as spending capacity by regional and local governments, see <u>Pina-Sánchez 2014</u>)
 - measures being played (e.g. arrest goals can inflate crime counts in police data, student satisfaction will increase if I bring chocolates before the module evaluation)
 - inconsistent raters (e.g. 'blackness' is defined differently by different people, see King & Johnson 2016)

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights
- Imputation
- Measurement Error
- Recap

- Implications of Measurement Error
- Measurement error adjustments are tricky
 - either require a 'gold standard' (a subset of our sample for which X is observed)
 - or to rely on additional assumptions

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights
- Imputation
- Measurement Error
- Recap

Implications of Measurement Error

- Measurement error adjustments are tricky
 - either require a 'gold standard' (a subset of our sample for which X is observed)
 - or to rely on additional assumptions
- But often we can still anticipate its potential effects
 - -~ If $E(\epsilon) \neq 0$ we should expect bias in the direction of the measurement error

e.g. crack down policies on knife crime should be considered when assessing trends in knife crime using police data

- if the measurement error is random and affecting the outcome variable, $E(Y^*) = Y$, only measures of uncertainty will be affected, $Y^* = \beta_0 + \beta_1 X + e + \epsilon$
- however, even random error in an explanatory variable, will bias (attenuate) regression coefficients

the slope in simple linear regression, $\hat{\beta}_1 = \frac{Cov(Y, X)}{Var(X)}$ if X is affected by random error, $\hat{\beta}_1^* = \frac{Cov(Y, X)}{Var(X) + Var(\epsilon)}$

Effect of Random Measurement Error

Workshop Aims

Selection Bias

Missing Data

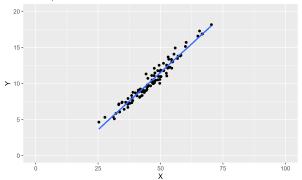
Probability Weights

Imputation

Measurement Error

Recap

Scatterplot for Y and X



Workshop Aims

Selection Bias

Missing Data

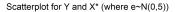
Probability Weights

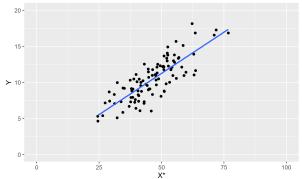
Imputation

Measurement Error

Recap

Effect of Random Measurement Error





Workshop Aims

Selection Bias

Missing Data

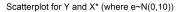
Probability Weights

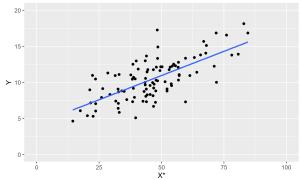
Imputation

Measurement Error

Recap

Effect of Random Measurement Error





Workshop Aims

Selection Bias

Missing Data

Probability Weights

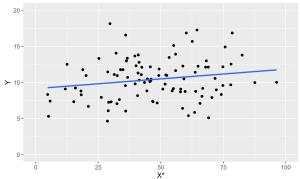
Imputation

Measurement Error

Recap

Effect of Random Measurement Error

Scatterplot for Y and X* (where e~N(0,20))



Selection Bias

Missing Data

Probability Weights

Imputation

Measurement Error

Recap

• We have identified common consequences of missing data and measurement error

 if the missing data is ignorable we should only expect a loss of statistical power

- if the missing data is not ignorable we should expect bias
- for measurement error even random error will bias our estimates (attenuate the slope)

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights
- Imputation
- Measurement Error
- Recap

- We have identified common consequences of missing data and measurement error
 - if the missing data is ignorable we should only expect a loss of statistical power

- if the missing data is not ignorable we should expect bias
- for measurement error even random error will bias our estimates (attenuate the slope)
- We have learnt some common methods to adjust these problems
 - probability weights, help to improve overall representativity, easy to calculate and apply
 - imputation, allow us to use cases affected by item-misingness

- Workshop Aims
- Selection Bias
- Missing Data
- Probability Weights
- Imputation
- Measurement Error
- Recap

- We have identified common consequences of missing data and measurement error
 - if the missing data is ignorable we should only expect a loss of statistical power

- if the missing data is not ignorable we should expect bias
- for measurement error even random error will bias our estimates (attenuate the slope)
- We have learnt some common methods to adjust these problems
 - probability weights, help to improve overall representativity, easy to calculate and apply
 - imputation, allow us to use cases affected by item-misingness
- Recommended readings:
 - on probability weights <u>Yansaneh (2003)</u> 'Construction and Use of Sample Weights'
 - $\begin{array}{c} & {\rm on\ multiple\ imputation} \\ {\rm Van\ Buuren\ \&\ Groothuis-Oudshoorn\ (2013)} \\ {\rm \overline{Imputation\ by\ Chained\ Equations\ in\ R'}} \ {}^{\rm 'mice:\ Multivariate} \end{array}$